Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
DNA methylation is an important epigenetic modification required for the specific regulation of gene expression and the maintenance of genome stability in plants and animals. However, the mechanism of DNA demethylation remains largely unknown. Here, we show that two SGS3-like proteins, FACTOR OF DNA DEMETHYLATION 1 (FDDM1) and FDDM2, negatively affect the DNA methylation levels at ROS1-dependend DNA loci in Arabidopsis. FDDM1 binds dsRNAs with 5′ overhangs through its XS (rice gene X and SGS3) domain and forms a heterodimer with FDDM2 through its XH (rice gene X Homology) domain. A lack of FDDM1 or FDDM2 increased DNA methylation levels at several ROS1-dependent DNA loci. However, FDDM1 and FDDM2 may not have an additive effect on DNA methylation levels. Moreover, the XS and XH domains are required for the function of FDDM1. Taken together, these results suggest that FDDM1 and FDDM2 act as a heterodimer to positively modulate DNA demethylation. Our finding extends the function of plant-specific SGS3-like proteins.more » « less
-
The root-associated microbiome (rhizobiome) affects plant health, stress tolerance, and nutrient use efficiency. However, it remains unclear to what extent the composition of the rhizobiome is governed by intraspecific variation in host plant genetics in the field and the degree to which host plant selection can reshape the composition of the rhizobiome. Here, we quantify the rhizosphere microbial communities associated with a replicated diversity panel of 230 maize ( Zea mays L .) genotypes grown in agronomically relevant conditions under high N (+N) and low N (-N) treatments. We analyze the maize rhizobiome in terms of 150 abundant and consistently reproducible microbial groups and we show that the abundance of many root-associated microbes is explainable by natural genetic variation in the host plant, with a greater proportion of microbial variance attributable to plant genetic variation in -N conditions. Population genetic approaches identify signatures of purifying selection in the maize genome associated with the abundance of several groups of microbes in the maize rhizobiome. Genome-wide association study was conducted using the abundance of microbial groups as rhizobiome traits, and n=622 plant loci were identified that are linked to the abundance of n=104 microbial groups in the maize rhizosphere. In 62/104 cases, which is more than expected by chance, the abundance of these same microbial groups was correlated with variation in plant vigor indicators derived from high throughput phenotyping of the same field experiment. We provide comprehensive datasets about the three-way interaction of host genetics, microbe abundance, and plant performance under two N treatments to facilitate targeted experiments toward harnessing the full potential of root-associated microbial symbionts in maize production.more » « less
An official website of the United States government
